Plant aromatic L-amino acid decarboxylases: evolution, biochemistry, regulation, and metabolic engineering applications.

نویسندگان

  • P J Facchini
  • K L Huber-Allanach
  • L W Tari
چکیده

A comprehensive survey of the extensive literature relevant to the evolution, physiology, biochemistry, regulation, and genetic engineering applications of plant aromatic L-amino acid decarboxylases (AADCs) is presented. AADCs catalyze the pyridoxal-5'-phosphate (PLP)-dependent decarboxylation of select aromatic L-amino acids in plants, mammals, and insects. Two plant AADCs, L-tryptophan decarboxylase (TDC) and L-tyrosine decarboxylase (TYDC), have attracted considerable attention because of their role in the biosynthesis of pharmaceutically important monoterpenoid indole alkaloids and benzylisoquinoline alkaloids, respectively. Although plant and animal AADCs share extensive amino acid homology, the enzymes display striking differences in their substrate specificities. AADCs from mammals and insects accept a broad range of aromatic L-amino acids, whereas TDC and TYDC from plants exhibit exclusive substrate specificity for L-amino acids with either indole or phenol side chains, but not both. Recent biochemical and kinetic studies on animal AADCs support basic features of the classic AADC reaction mechanism. The catalytic mechanism involves the formation of a Schiff base between PLP and an invariable lysine residue, followed by a transaldimination reaction with an aromatic L-amino acid substrate. Both TDC and TYDC are primarily regulated at the transcriptional level by developmental and environmental factors. However, the putative post-translational regulation of TDC via the ubiquitin pathway, by an ATP-dependent proteolytic process, has also been suggested. Isolated TDC and TYDC genes have been used to genetically alter the regulation of secondary metabolic pathways derived from aromatic amino acids in several plant species. The metabolic modifications include increased serotonin levels, reduced indole glucosinolate levels, redirected shikimate metabolism, increased indole alkaloid levels, and increased cell wall-bound tyramine levels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Establishment of a yeast platform strain for production of p-coumaric acid through metabolic engineering of aromatic amino acid biosynthesis.

Aromatic amino acids are precursors of numerous plant secondary metabolites with diverse biological functions. Many of these secondary metabolites are already being used as active pharmaceutical or nutraceutical ingredients, and there are numerous exploratory studies of other compounds with promising applications. p-Coumaric acid is derived from aromatic amino acids and, besides being a valuabl...

متن کامل

Engineering Escherichia coli to overproduce aromatic amino acids and derived compounds

The production of aromatic amino acids using fermentation processes with recombinant microorganisms can be an advantageous approach to reach their global demands. In addition, a large array of compounds with alimentary and pharmaceutical applications can potentially be synthesized from intermediates of this metabolic pathway. However, contrary to other amino acids and primary metabolites, the a...

متن کامل

Production of Cinnamic and p-Hydroxycinnamic Acids in Engineered Microbes

The aromatic compounds cinnamic and p-hydroxycinnamic acids (pHCAs) are phenylpropanoids having applications as precursors for the synthesis of thermoplastics, flavoring, cosmetic, and health products. These two aromatic acids can be obtained by chemical synthesis or extraction from plant tissues. However, both manufacturing processes have shortcomings, such as the generation of toxic subproduc...

متن کامل

Genetic engineering of Escherichia coli to improve L-phenylalanine production

BACKGROUND L-phenylalanine (L-Phe) is an essential amino acid for mammals and applications expand into human health and nutritional products. In this study, a system level engineering was conducted to enhance L-Phe biosynthesis in Escherichia coli. RESULTS We inactivated the PTS system and recruited glucose uptake via combinatorial modulation of galP and glk to increase PEP supply in the Xllp...

متن کامل

The Biosynthetic Pathways for Shikimate and Aromatic Amino Acids in Arabidopsis thaliana.

The aromatic amino acids phenylalanine, tyrosine and tryptophan in plants are not only essential components of protein synthesis, but also serve as precursors for a wide range of secondary metabolites that are important for plant growth as well as for human nutrition and health. The aromatic amino acids are synthesized via the shikimate pathway followed by the branched aromatic amino acid metab...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Phytochemistry

دوره 54 2  شماره 

صفحات  -

تاریخ انتشار 2000